PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants.

نویسندگان

  • Kentaro Ifuku
  • Yumiko Yamamoto
  • Taka-Aki Ono
  • Seiko Ishihara
  • Fumihiko Sato
چکیده

PsbP and PsbQ proteins are extrinsic subunits of photosystem II (PSII) and participate in the normal function of photosynthetic water oxidation. Both proteins exist in a broad range of the oxygenic photosynthetic organisms; however, their physiological roles in vivo have not been well defined in higher plants. In this study, we established and analyzed transgenic tobacco (Nicotiana tabacum) plants in which the levels of PsbP or PsbQ were severely down-regulated by the RNA interference technique. A plant that lacked PsbQ showed no specific phenotype compared to a wild-type plant. This suggests that PsbQ in higher plants is dispensable under the normal growth condition. On the other hand, a plant that lacked PsbP showed prominent phenotypes: drastic retardation of growth, pale-green-colored leaves, and a marked decrease in the quantum yield of PSII evaluated by chlorophyll fluorescence. In PsbP-deficient plant, most PSII core subunits were accumulated in thylakoids, whereas PsbQ, which requires PsbP to bind PSII in vitro, was dramatically decreased. PSII without PsbP was hypersensitive to light and rapidly inactivated when the repair process of the damaged PSII was inhibited by chloramphenicol. Furthermore, thermoluminescence studies showed that the catalytic manganese cluster in PsbP-deficient leaves was markedly unstable and readily disassembled in the dark. The present results demonstrated that PsbP, but not PsbQ, is indispensable for the normal PSII function in higher plants in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of protein cross-linking and radiolytic footprinting to elucidate PsbP and PsbQ interactions within higher plant Photosystem II.

Protein cross-linking and radiolytic footprinting coupled with high-resolution mass spectrometry were used to examine the structure of PsbP and PsbQ when they are bound to Photosystem II. In its bound state, the N-terminal 15-amino-acid residue domain of PsbP, which is unresolved in current crystal structures, interacts with domains in the C terminus of the protein. These interactions may serve...

متن کامل

Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem ii activity in the cyanobacterium Synechocystis 6803.

The mechanism of oxygen evolution by photosystem II (PSII) has remained highly conserved during the course of evolution from ancestral cyanobacteria to green plants. A cluster of manganese, calcium, and chloride ions, whose binding environment is optimized by PSII extrinsic proteins, catalyzes this water-splitting reaction. The accepted view is that in plants and green algae, the three extrinsi...

متن کامل

The extreme halophyte Salicornia veneta is depleted of the extrinsic PsbQ and PsbP proteins of the oxygen-evolving complex without loss of functional activity.

BACKGROUND AND AIMS Photosystem II of oxygenic organisms is a multi-subunit protein complex made up of at least 20 subunits and requires Ca(2+) and Cl(-) as essential co-factors. While most subunits form the catalytic core responsible for water oxidation, PsbO, PsbP and PsbQ form an extrinsic domain exposed to the luminal side of the membrane. In vitro studies have shown that these subunits hav...

متن کامل

Resonance assignment of PsbP: an extrinsic protein from photosystem II of Spinacia oleracea

PsbP (23 kDa) is an extrinsic eukaryotic protein of photosystem II found in the thylakoid membrane of higher plants and green algae. It has been proven to be indispensable for proper functioning of the oxygen evolving complex. By interaction with other extrinsic proteins (PsbQ, PsbO and PsbR), it modulates the concentration of two cofactors of the water splitting reaction, Ca(2+) and Cl(-). The...

متن کامل

The PsbQ protein defines cyanobacterial Photosystem II complexes with highest activity and stability.

Light-induced conversion of water to molecular oxygen by Photosystem II (PSII) is one of the most important enzymatic reactions in the biosphere. PSII is a multisubunit membrane protein complex with numerous associated cofactors, but it continually undergoes assembly and disassembly due to frequent light-mediated damage as a result of its normal function. Thus, at any instant, there is heteroge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 139 3  شماره 

صفحات  -

تاریخ انتشار 2005